POST-SHUTDOWN-DATA

Offline EM, MET Distributions

THANKS to

Jan Stark,

Sophie Trincaz-Duvoid, Patrice Verdier

post-shutdown runs

```
24 Nov: run 185576 → BLS power-plug problem
```

25/26 Nov: run 185746

run 185747

run 185748

run 185750

run 185751

27 Nov: run 185797

28 Nov: run 185825

run 185829

run 185831

luminosity estimation 485 nb⁻¹= 77 nb^{-1} + 46 nb⁻¹ + 362 nb⁻¹ processed with p14.05.02

check of calorimeter performance with

- ⇒ electrons (Jan Stark Grenoble)
- ⇒ missing-Et (Sophie Trincaz-Duvoid Paris, Patrice Verdier Orsay)

pre-shutdown: using em-candidates

Electron candidates, with their small size in η/ϕ have proven to be a valuable tool to spot BLS problems in the calorimeter.

 η/ϕ distribution of all candidate EM objects id=|10,11|:

p_T > 25 GeV (15 GeV post) EM fraction > 0.9 isolation < 0.15 HMx8 < 20 in fiducial region

pink boxes: tower two problem\

blue boxes: energy sharing

problem

green boxes: cable swap

red boxes: not understood

Run 185576: BLS-power plug

Statistical analysis of em-candidates

Black dots:
electron candidates

Dashed green lines:

Colours: approximate probability that we are seeing a deficit of candidates in a given

blocks of 2x2 towers

white or cold colours ⇒ low probability warm colours ⇒ high

warm colours ⇒ nig probability

tower.

Loose BLS power plug. Fixed now!

em-objects/em-candidates

spatial distribution of em-objects:

- pT>10GeV
- ⇒ high occupancy in CC at 45<iphi<64

- not observed when requiring id=|10,11|
- id-criteria for calorimeterbased em-selection
- ⇒ without id requirement track based em-selection included
- ⇒ CFT-mapping error!

statistical analysis of em's

runs:
185750
185751
185797
185825
185829
185831
⇒L=362nb⁻¹
~ 39 k ems

- dots for ems
- •colors for "deficit probability": taking into account eta-dependence of expected occupancy

high deficit regions

only towers with a deficit probability > 0.998

- 17 towers observed
- 7 towers expected from statistical fluctuations
- 2 explained by "tower 2 problem"
- 8 towers unexplained! ...which ones?

"tower 2 problem"

"Tower 2" problems

Tower 2 problem of BLS boards:

- correlation between odd/even towers on one BLS-board
- checked for all 1152 boards
- confirmed by pulser runs
- fixed

pre/post comparison

Trigger: E1/2/3_2SH8

Blue histogram:

2.8 pb⁻¹ of good runs taken right before the shutdown.

Red points: 362nb⁻¹ after shutdown

⇒ normalisation according to integrated luminosity

 \Rightarrow not to the same surface!

pre/post comparison

- basic kinematical distributions and estimators are compatible with pre-shutdown data
- event-rate looks fine

Z→e⁺e⁻ comparison

selection: no fiducial region requirement

362 nb⁻¹ post-shutdown data

2.8 pb⁻¹ "late" pre-shutdown data

likelihood fit with voigtian-distribution: natural width (from pdg) doesn't appear in resolution (5.4 \pm 1.1% vs. 3.9 \pm 0.5%)

signal events: $63.7 \pm 9.4 \Rightarrow 38.2 \pm 3.9$ events expected from old data resolution high by $\sim 1\sigma$, yield high by $\sim 2\sigma$

MET comparisons

Data Samples

- pre-shutdown: 111 runs processed with p14.03.02

runs 180040 →180956 -14712 lumi blocks

- post-shutdown: 9 runs processed with p14.05.02

runs 185746 → 185831 - 986 lumi blocks

- apply luminosity block selection:
 - number of events > 500
 - SHIFT-METbxy = $\sqrt{(\langle METbx \rangle^2 + \langle METby \rangle^2)} < 4 \text{ GeV}$
 - RMS-METbxy = $\sqrt{(\sigma\text{-METbx}^2 + \sigma\text{-METby}^2)}$ < 22 GeV
 - ⟨SETb⟩> 80 GeV

After selection, keep:

14200 (96,5 %) lumi blocks for pre-shutdown data (~31.8 Mevts)

929 (94,2 %) lumi blocks for post-shutdown data (~2.0 Mevts)

METBx vs. lumi-block

- For each lumi block: compute $\langle \ \rangle$ and σ of METBx, METBy, METB, SETB
- no trigger selection, no T42
- Note that the vertical scale is different!

This range (180520 run<180540) has range stat and range aspect than post-shutdown data. It is used for more detailed comparisons

runs 185825, 185829,185831 have a different MET behavior (in red on next plots)

T42: pre-shutdown - Metx

Side-remark: T42 helps to reduce fluctuations in Met x/y!

Met-xy Shift P14.03.02

Met-xy Shift same data with T42

One entry= 1 file or 20 lumi blocks

METB_X

Pre-shutdown

Post-shutdown

METBx: compatible Runs

Pre-shutdown - Runs 180520-180540

Post-shutdown

METBy

Pre-shutdown

JETS

- •Structure in Jet eta/phi distribution already present in pre-shutdown data ("Yuri's Jet")
- vanishes after jet-id cuts
- under study to find criteria that cleans up the distributions and may give hint of the origine of these jets

Summary

- electron analysis:
 - understand remaining bad towers
 - monitor Z-peak behavior
 - we have to better understand the resolution anyhow
 - get hold of low energy electrons once tracking is fixed
- MET:
 - understand MET-fluctuations T42, trigger selections
 - shift in METy to be tracked down
- JET
 - investigation for "Yuri's Jets"